ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

M.Sc. (PHYSICS)

COURSE CODE: 374

Reg	gister Number :		
• •		•	Signature of the Invigilator (with date)
		•	

COURSE CODE: 374

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.		frequency of pho sion with a heav	_	i i	an elect	ron of 20 keV is	brought to rest in one
	(A)	$4.84 imes 10^{18}\mathrm{Hz}$			(B)	4.84 Hz	•
	(C)	$4.84 \times 10^{-18} \mathrm{Hz}$	3		(D)	$5.84 \times 10^{-18} \mathrm{H}$	Z
2.		wavelength of th	ie seco	ond line of the			rogen is
	(A)	1282 Å				1380 Å	
	(C)	12820 Å			(D)	2820 Å	
3.	The	ionization potent	ial of p	ositronium is -		—— (use R_{∞} =	$= 1.09737 \times 10^{-3} / \text{Å})$
		5.8 eV		$6.8~\mathrm{eV}$			(D) None
4.		oose that an ator es of the atom's					What are the possible
	(A) _.	$\frac{\sqrt{15}}{2}\hbar, \frac{\sqrt{3}}{2}\hbar$	(B)	$\frac{\sqrt{3}}{2}\hbar,\frac{\sqrt{3}}{2}\hbar$	(C)	$\frac{\sqrt{15}}{2}\hbar, -\frac{\sqrt{3}}{2}\hbar$	(D) None
5 .	The	wavelength of th	ne K_a	line for Molyk	denum	(Z = 42) is	
	(A)	$7.21~{ m \AA}$	(B)	0.0721 Å	(C)	$0.721~{ m \AA}$	(D) 0.972 Å
6.		nd I in W.m ⁻² ca			-		, then the intensity of nd in $N.m^{-2}$ using the
	(A)	$P = \sqrt{\rho v I}$			(B)	$P = \sqrt{\frac{3\rho vI}{2}}$	•
	(C)	$I = \frac{5P^2}{3\rho v}$	· .		(D)	$P = \sqrt{2\rho v I}$	
7.	Som	merfeld explain	ed the	hydrogen fine	structi	are by applying	the
	(A)	Heisenberg's p		-	(B)	Zeeman's effec	
	(C)	Special theory	-		(D)	Compton Effec	et ·
8.	field			_	-		f the applied magnetic orbital motion of the
	(A)	Zeeman effect		•	(B)	Paschen-Back	effect
,	(C)	Stark effect			(D)	Tyndall effect.	

9.	elec		nan the in	nteraction between the spin of each teractions between the two spins and
	(A)	j-j coupling	(B)	L-S coupling
	(C)	Magnetic dipole	(D)	Magnetic vector
10.	The	value of the Bohr magneton in erg	/gauss is	
	(A)	0.918×10^{-22}	(B)	0.918×10^{-21}
	(C)	0.918×10^{-20}	(D)	None
11.	Prin	ciple of superposition can be best	represente	ed by
	(A)	$y = y_1 / y_2$	(B)	$y = y_1 y_2$
	(C)	$y = f(y_1, y_2; y \neq y_1 + y_2)$	(D)	$y = y_1 + y_2$
12.		ratio of reflected intensity to th lium having refractive index n_1 to		t intensity at normal incidence from
	(A)	$\left(\frac{(n_1-n_2)}{(n_1+n_2)}\right)^2$	(B)	$\left(\frac{4n_1n_2}{(n_1-n_2)}\right)$
•	(C)	$\left(\frac{(n_1+n_2)}{(n_1-n_2)}\right)^2$	(D)	$\left(\frac{(n_1 + n_2)^2}{4n_1n_2}\right)$
13.	The	phase change of π is observed on	reflection	from
	(A)	Denser to rarer medium	(B)	Rarer to denser medium
a.	(C)	Both (A) and (B)	(D)	None of these
14.	Las	ing in LASER is due to		
	(A)	Spontaneous equation	(B)	Stimulated emission
	(C)	Both (A) and (B)	(D)	None of the above
15.	Diff	fraction of light can be understood	b y	
	(A)	Wave nature of light	(B)	Particle nature of light
	(C)	Both (A) and (B)	(D)	None of the above
16.	Wh	ich of the following is not a third o	rder aberr	ation?
	(A)	Astigmatism	(B)	Coma

(C) Chromatic aberration

(D) Distortion of field

17.		wave plate intro a-ordinary waves		s a phase	difference o	of	between ordin	ary and
	(A)	180°	(B)	90°	(C)	270°	(D) 360°	
18.		arly polarized boduction of a	ight	can be co	onverted to	circularly	polarized light w	ith the
	(A)	Half wave plate	•		(B)	Quarter w	ave plate	
	(C)	Attenuator			(D)	Polarizer		
19.							cm) is incident on he lens is approxim	
	(A)	$3.33\times10^{-16} \text{ m}^2/\text{V}$	V		(B)	3×10 ¹⁶ W/s	m ²	
	(C)	$10^{-10}_{\cdot} \text{ m}^2/\text{W}$			(D)	10 ¹⁰ W/m ²		
20.		divergence due ssian output of α				Ne laser (λ	$_0 = 0.6328 \ \mu\text{m}) \ \text{h}$	aving a
	(A)	2.3°	(B)	23°	(C)	2.4°	(D) 46°	
21.	In M	lichelson interfer	omet	er, as you	decrease th	e separation	n between the two	mirrors
	(A)	Fringes appear	collar	osing				
•	(B)	Fringes appears	s expa	anding				
	(C)	No change in fr	inge p	attern			. •	
	(D)	Sometimes it co	llaps	es aņd son	netimes it e	xpands	•	
22.	Fra	unhoffer diffraction	on cai	n be obser	ved for			
	(A)	Source and scre	en ar	e at finite	distance			
	(B)	Source and scre	en ar	e at infini	ty			
	(C)	Source is at fini	te an	d screen a	t infinity		•	
	(D)	Source is at infi	inity a	and screen	at finite di	stance		
23.	In t	he sun, helium is	prod	uced from	hydrogen b	y one of the	following processe	8
	(A)	radioactive deca	ay		(B)	disintegra	tion	•
	(C)	fission			(D)	fusion		
24.		half-life of an is	-			ays. The ma	ass of a 10 gram sa	imple of
	(A)	0.312 grams			(B)	0.625 gran	ns	
	(C)	1.25 grams			(D)	2.50 gram	s .	

25.	One of the following is a device that de their tracks.	etects c	harged particles but does NOT show
	(A) spark chamber	(B)	photographic plate
	(C) scintillation counter	(D)	bubble chamber
26.	The emission of a positron from a radio emission of one of the following.	active a	atom is generally accompanied by the
	(A) a meson	(B)	a neutrino
	(C) an antineutrino	(D)	a baryon
27.	When a fast charged particle traverses a velocity of light in that medium, radiatio		
	(A) Cerenkov radiation	(B)	Point radiation
	(C) Synchrotron radiation	(D)	Bremsstrahlung
28.	An alpha particle colliding with an electi	ron lose	s
	(A) all of its energy	(B)	half of its energy
	(C) little of its energy	(D)	none of its energy
		. •	
29 .	9		-
	(A) light microscope	(B)	•
-	(C) centrifuge	(D)	electron microscope
30.	In Rutherford's experiment involving a nuclei, the fact that some of the alpha back-scattered, led to one of the following (A) the charge of an electron is negative (B) the nucleus of a gold atom carries a (C) most of the mass of a gold atom is in (D) the nucleus of a gold atom occupies	particle g conclu e all its ch in its nu	es bombarding the thin gold foil were usions. It was concluded that narge ucleus
31.	Neutrinos are a subset of which of the fo	llowing	•
	(A) photons (B) leptons	(C)	mesons (D) baryons
32.	In the equation of a nuclear reaction, all to each other on both sides of the equation (A) the net electric charge (C) the number of protons	on. Whi	
0.0			•
33.	A fast reactor uses	ha ma=-	
33.	(A) an extremely short time to get to the	ne maxi	mum operating reactivity
33.	(A) an extremely short time to get to th(B) uranium-235 as fuel	ne maxi	mum operating reactivity
33.	(A) an extremely short time to get to the		mum operating reactivity

		ne fission of U235 tion?	, wha	t is the ave	erage numb	er of neutrons p	oroduce	d in th	e fission
	(A)	1.5	(B)	2.5	(C)	3.5	(D)	4.5	•
35.	The equa	value of coefficie	nt of o	cubical exp	ansion of a	gas at constan	t pressu	ıre has	s a value
	(A) (B) (C)	Latent heat of i Coefficient of lin Boiling point of	near e	xpansion	ensation a	s liquid			
	(D)	Coefficient cubi		_	a gas at co	nstant volume			•
36.		cealed Liquid nit 1 200 K to 240 K			from 80 l	K to 120 K in 20	0 sec. It	ts war	ming up
	(A)	20 sec		-	(B)	120 sec			
	(C)	More than 20 se	ec		(D)	Less than 20 se	ec		•
37.	Wate	er exists in liquid	l state	e even at 25	55°C	•			
	(A)	when it is kept	in a d	ouble walle	ed containe	r	•		
	(B)	it is highly pres	surize	ed and kept	in a cyline	der			
	(C)	it cannot exist s	O	•					
	(D)	when a large qu	antity	y of it is tal	ken in a co	ntainer			
				•					÷
						_	_		
38.		product of molec		reight (M)) is	
	/ A \	More for lighter	gas		(B)	More for heavy	gases		
	(A)	_	_		` '		8		
	(A) (C)	Less for heavy	_		(D)	Constant	•		
39.	(C) Wor	_	gases xpans	sion of a g	(D)	Constant) heati	ng from
39.	(C) Work	Less for heavy a	gases xpans	sion of a g	(D)	Constant		heati	ing from
39.	(C) Word temp	Less for heavy a k done during e perature T ₁ to T ₂	gases xpans	sion of a g	(D) as in an i	Constant		heati	ing from
39. 40.	(C) Wortem (A) (C)	Less for heavy $_{ m S}$ k done during eperature $ m T_1$ to $ m T_2$ $ m C_p/C_v$	gases xpans is		(D) as in an i (B) (D)	Constant sobaric process $R(V_1 - V_2)$	due to	heati	ing from
	(C) Wortem (A) (C)	Less for heavy g	gases xpans is		(D) as in an i (B) (D)	Constant sobaric process $R(V_1-V_2)$ $R(T_1-T_2)$ was postulated	due to	heati	ing from
	(C) Wortemp (A) (C) The	Less for heavy g	gases xpans is		(D) as in an i (B) (D) n of energy (B)	Constant sobaric process $R(V_1-V_2)$ $R(T_1-T_2)$ was postulated	due to	heati	ing from
	(C) Wortem (A) (C) The (A) (C) Chlo	Less for heavy g	yases xpans is eq	ui-partitio	(D) as in an i (B) (D) n of energy (B) (D)	Constant sobaric process $R(V_1-V_2)$ $R(T_1-T_2)$ was postulated Boltzmann Wein	due to		
40.	(C) Wortem (A) (C) The (A) (C) Chlo	Less for heavy g	xpans is eq	ui-partitio	(D) as in an i (B) (D) n of energy (B) (D)	Constant sobaric process $R(V_1-V_2)$ $R(T_1-T_2)$ was postulated Boltzmann Wein	due to		
40.	(C) Wortem (A) (C) The (A) (C) Chlo avai (A)	Less for heavy p	xpans is equal tight mole (B)	ui-partition ly sealed in cules is Two	(D) as in an i (B) (D) n of energy (B) (D) n a cylinder (C)	Constant sobaric process $R(V_1-V_2)$ $R(T_1-T_2)$ was postulated Boltzmann Wein The number Four	due to by of degr	ees of Five	freedom
40. 41.	(C) Wortem (A) (C) The (A) (C) Chlo avai (A)	Less for heavy g	xpans is equal tight mole (B)	ui-partition ly sealed in cules is Two	(D) as in an i (B) (D) n of energy (B) (D) n a cylinder (C) ters can m	Constant sobaric process $R(V_1-V_2)$ $R(T_1-T_2)$ was postulated Boltzmann Wein The number Four	due to by of degr (D)	ees of Five emper	freedom ature?

43.			gas is kept in a cylinder. It is tested for the velocity of the molecule in a cory. Its value is determined as 1930 m/sec. The gas should be									
	(A)	Hydrogen	(B)	Chlorine								
	(C)	Fluorine	(D)	Oxygen								
44.	as t	nere is a temperature difference betwee	en po	·								
	(A)	increase of entropy	(B)	law of continuity								
	(C)	diffusion	(D)	effusion								
45 .		n we stand under the sun light, we	feel '	warm even if the air surrounding us								
•	(A)	the air has infinite heat capacity	•									
	(B)	the air is in large amount										
	(C)	sun is hotter than us										
	(D)	the heat is transported by radiation f	rom t	the sun								
46.	Entr	opy increase of universal systems is no	at aic	mified by								
40.	(A)	Irreversible changes	n ere	inned by								
	(B)	It suggests arrow of time										
	(C)	Limiting the amount of work a system	n aan	n do								
	(D)	Perpetual motion	n can	i uo								
	(D)	respectat motion										
47 .		ch of the following function qualifies to ing in one dimension along x -axis?	o be a	a wave function of a quantum particle								
	(A).	$\exp(x)$	(B)	exp(-x								
	(C)	$\sin^{-1}(x)$	(D)	$\exp(-x^2)$								
48.	Mun	show of nodes of an ath anguar cigen fi	ınatia	on of one dimensional linear harmonic								
40.		lator is	HICLI	on one unitensional inteat natinoine								
٠	(A)	n+1 (B) $n-1$	(C)	n^2 (D) n								
49.	The	wave function of a particle in a one dir	nensi	ional box $[0, L]$ is								
	,	$n\pi$										
•	$\psi_n(:$	$x) = N \sin \frac{n\pi}{L} x$										
	Wha	at is N , if the wave function is normalized	zed?									
-	(A)	$\frac{2}{r}$	(B)	$\frac{L}{2}$								
	- 4	. D		- <u> </u>								
	(C)	$\sqrt{\frac{L}{2}}$	(D)	$\sqrt{\frac{2}{L}}$								
		1 4		1 44								

50.		ee particle tant potent on?										
	(A)	2λ		(B)	3λ.		(C)	$\lambda/2$. (D)	λ/3	
51.		ground star electron in t			hydrogen	atom	is –1	13.6 eV. V	What is th	e kii	netic ener	rgy of
	(A)	$-13.6~\mathrm{eV}$		(B)	−27.2 eV		(C)	0 eV	(D)	13.6 eV	
52 .	Whi	ch of the fol	lowing	oper	ators is no	t Herr	nitia	n?				•
	(A)			(B)			(C)			(D)	xpx	
53.	stati anot	n oil drop onary betw her drop of 00 V. The cl	een tl half tl	ne pla ne rac	ates by ap lius statior	plying ary, t	ap	otential	difference	of 4	400 V.To	keep
	(A)	Q/24		(B)	Q/12		(C)	3 <i>Q</i> /2		(D)	2Q/3	
54.		ne energy o niltonian of										s, the
	(A)	Rotation				* **	(B)	Transla	tion			
	(C) _.	Parity	•		-		(D)	Time Tr	anslation		,	
55 .		$\ket{n_1,n_2}$ be ar state	energ	y eig	en state of	a part	icle	in two di	mensional	box	. If the pa	rticle
	$ \alpha\rangle$ =	$=\frac{1}{\sqrt{3}} 2,1\rangle+\sqrt{2}$	$\left \frac{2}{3}\right $ 2, 2	2)		•						
	wha	t is the prol	ability	y'that	the energ	y of th	e fir	st particl	e is E_2 ??			
	(A)	1		(B)	2/3		(C)	1/3	((D)	0	
56.		it is the de lator?	genera	acy o	$n^{ ext{th}}$ excite	ed stat	te of	two dim	ensional i	isotr	opic hari	monic
	(A)	2n		(B)	n		(C)	n+1	((D)	n^2	
57.	cove is $f_{\rm c}$	pe open at l red and the losed. Then,	pipe i the rel	is aga	in made t	o reson hem is	nate,	the fund	lamental f			
		$f_{\text{open}} = \frac{1}{2} f_{\text{cl}}$						$f_{\rm closed} = \frac{3}{2}$	-			
	. (C)	$f{\text{closed}} = \frac{2}{3}f_{\text{closed}}$	ppen	-			(D)	$f_{\text{closed}} = \frac{1}{2}$	$\frac{1}{2}f_{ ext{open}}$			

- The function $f(x) = \sqrt{(x)}$ is
 - Uniformly continuous on [0, 1] but not on $[0,\infty)$
 - Uniformly continuous on $[0,\infty)$
 - (C) Uniformly continuous on [0, 1)
 - (D) Uniformly continuous on [0, 1]
- 59. Consider the integral

$$\int_{0}^{\infty} \frac{dx}{x^{p'}}$$

This integral

- Converges if p > 1 and diverges if p < 1.
- Converges if p < 1 and diverges if p > 1. **(B)**
- (C) Diverges for any value of p
- (D) Converges for any value of p
- 60. Let f(x,y) and g(x,y) be two homogeneous functions of degree m and n, where $m \neq 0$. Let h = f + g and $x \frac{\partial h}{\partial x} + y \frac{\partial h}{\partial y} = 0$

Then

- (A) f is not proportional to g
- (B) $f = \alpha g$ where α is a scalar

- 61. Find the volume of the solid in the first octant bounded by the paraboloid $z = 36 - 4x^2 - 9y^2$

 - (A) $V = 27\pi$ (B) $V = \frac{16}{9}$ (C) V = 27
- $(D) V = \frac{16}{9}\pi$

62. Consider the matrix.

$$\begin{pmatrix} \mu & -1 & 0 & 0 \\ 0 & \mu & -1 & 0 \\ 0 & 0 & \mu & -1 \\ -6 & 11 & -6 & 1 \end{pmatrix}$$

where μ is a scalar, not necessarily an integer. Determine the possible values of μ such that the rank of the matrix is 3

(A) $0 < \mu < 4$

- (B) $1 < \mu < 3$
- (C) μ can have values 1, 2 or 3 only
- (D) $\mu = 3$ only

63. Consider a 3×3 matrix,

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Then A^{50} is given by

- (A) $A^{50} = \begin{pmatrix} 50 & 0 & 0 \\ 50 & 0 & 50 \\ 0 & 50 & 0 \end{pmatrix}$
- (B) $A^{50} = \begin{pmatrix} 25 & 0 & 0 \\ 25 & 0 & 25 \\ 0 & 25 & 0 \end{pmatrix}$

(C) $A^{50} = \begin{pmatrix} 1 & 0 & 0 \\ 25 & 1 & 0 \\ 25 & 0 & 1 \end{pmatrix}$

(D) $A^{50} = A$

64. The matrix

$$A = \begin{pmatrix} 1 & -1 & -1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

has the following properties

- (A) It has eigen values (-1, i, -i) and the matrix is diagonalizable
- (B) It has eigenvalues (-1, i, -i) and the matrix is not diagonalizable
- (C) It has eigenvalues (-1,-i,-i) and the matrix is diagonalizable
- (D) It has eigenvalues (1, i, -i) and the matrix is diagonalizable.
- 65. The integrating factor of the differential equation $(5x^3 + 12x^2 + 6y^2) dx + 6xy dy = 0$ is given by
 - (A) $\log_{10} x$
- (B) x
- (C) $\ln x$
- (D) $\exp(\log_{10} x)$
- 66. Suppose we want to calculate the probability of obtaining at least two "six" in rolling a fair die (having six faces) four times. What probability distribution should be used to solve the problem and what would be the probability?
 - (A) Binomial distribution to be used and the probability is 4/6
 - (B) Poisson distribution to be used and the probability is 12.3%
 - (C) Binomial distribution to be used and the probability is 0.0132
 - (D) Binomial distribution to be used and the probability is 13.2%

67. Two masses m_1 and m_2 are connected by an inextensible cord through a smooth pulley as shown in the figure. Calculate the tension in the cord, N. (Here g is the acceleration due to gravity.)

(A)
$$N = \frac{2m_1m_2}{m_1 + m_2}$$

(B)
$$N = g \frac{m_1 m_2}{m_1 + m_2}$$

(C)
$$N = g \frac{2m_1m_2}{m_1 + m_2}$$

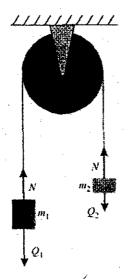
(D)
$$N = \frac{m_1 m_2 g}{2(m_1 + m_2)}$$

68. A particle is experiencing a force $F = 3x^2i + 4j$. Calculate the work done on the particle as it moves from a point (2, 3) to another point (3, 0). Take the units of force as Newton and coordinates in meters.

(D) 31 J

- 69. One kilowatt-hour is equivalent to
 - (A) 360 MJ

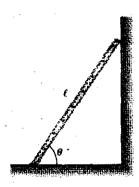
(B) 3.60 mJ


(C) $3.6 \times 10^5 \text{ J}$

- (D) $2.247 \times 10^{25} \text{ eV}$
- 70. Three masses $m_1 = 1.2$ kg, $m_2 = 2.5$ kg and $m_3 = 3.4$ kg form an equilateral triangle of edge length a = 140 cm. What is the center of mass (x, y) of this three-particle system?
 - (A) (83 cm, 58 cm)

(B) (58 cm, 83 cm)

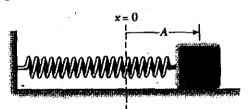
(C) (8.3 cm, 5.8 cm)


- (D) (5.8 cm, 8.3 cm)
- 71. A uniform solid cylindrical disk, of mass M = 1.4 kg and radius R = 8.5 cm rolls smoothly across a horizontal table at a speed of 15 cm/s. Calculate the kinetic energy.

- (A) 0.1575 J
- (B) 15.75 mJ
- (C) 24 mJ
- (D) 0.24 J

- 72. A steel rod has a radius R = 9.5 mm and a length L = 81 cm. A force of 62 kN on the steel rod elongates its length. What is the percentage elongation of the steel rod?
 - (A) 0.89 %
- (B) 1.1 %
- (C) 2.2 %
- (D) 0.11 %
- 73. According to SI units definition, one second is the time taken by 9192631770 oscillations of the light of a specified wavelength emitted by a ______ atom.
 - (A) Quartz
- (B) Cesium-133
- (C) Rubidium
- (D) Xenon-136

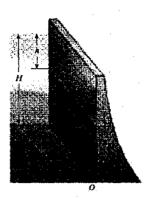
74. See the ladder figure.


A uniform ladder of length l and weight rests against a smooth, vertical wall as shown in the figure. If the coefficient of static friction μ_s between ladder and the ground is 0.40, calculate the minimum angle θ_{\min} at which the ladder does not slip.

(A) $\theta_{\min} = \frac{1}{2} \tan^{-1}(1.25)$

(B) $\theta_{\min} = 39^{\circ}$

(C) $\theta_{\min} = 51^{\circ}$


- (D) $\theta_{\min} = \sin^{-1}(1.25)$
- 75. A block with a mass of 200 g is connected to a light spring for which the force constant is 5.00 N/m and is free to oscillate on a horizontal, frictionless surface. The block is displaced 5.00 cm from equilibrium and released from rest, as shown in figure.

The acceleration of the mass is given by

- (A) $a = (-1.25 \ m/s^2)\cos(5t)$
- (B) $a = (1.25 \, m/s^2) \cos(5t)$
- (C) $a = (-1.25 \ m/s^2) \sin(5t)$
- (D) $a = (0.05 \, m/s^2) \cos(5t)$

76. See Fig.

Water having a density ρ is filled to a height H behind a dam of width w as shown in the figure. Determine the resultant force exerted by the water on the dam. (Here g is the acceleration due to gravity.)

(A)
$$F = \frac{1}{2} \rho gH$$

(B)
$$F = \rho g w H^2$$

(C)
$$F = \frac{1}{2} \rho g w^2 H$$

(D)
$$F = \frac{1}{2} \rho g w H^2$$

Electric field E at the center of a uniformly charged conductor is

(B)
$$\frac{q}{4\pi\varepsilon_0 R^2}$$

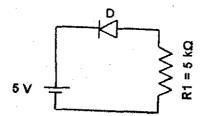
(B)
$$\frac{q}{4\pi\varepsilon_0 R^2}$$
 (C) $\frac{qr}{4\pi\varepsilon_0 R^3}$

78. The Laplace's equation is

(A)
$$\nabla^2 V = \frac{\rho}{\epsilon_0}$$

(B)
$$\nabla^2 V = 0$$

$$\nabla^2 V = \frac{\rho}{\epsilon_0} \qquad (B) \quad \nabla^2 V = 0 \qquad (C) \quad \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon}$$


(D)
$$\vec{\nabla} \cdot \vec{B} = 0$$

Standing waves are formed from the superposition of two sinusoidal waves having the same frequency, amplitude, and wavelength but traveling in opposite directions. Choose the wrong statement.

- (A) The points of zero amplitudes are called nodes and they occur at $x = \frac{n\lambda}{2}$, where n = 0, 1, 2, ...
- The maximum amplitude points are called antinodes and they occur at $x = \frac{n\lambda}{4}$, where, n=1, 3, 5
- The points of zero amplitudes are called antinodes and they occur at $x = \frac{n\lambda}{2}$, where, n = 0, 1, 2, ...
- The maximum amplitude points are called antinodes and they occur at $x = \frac{n\lambda}{4}$, (D) where n = 1, 2, 3

80.	An electromagnetic wave travels along Z-axis. Which of the following pair of space and time varying fields would generate such a wave?										
	(A)	E_x, B_y	(B)	E_y, B_x	(C)	E_z , B_x	(D)	E_y, B_z			
81.	ener					gnetic force i flowed out th	-				
	(A)	Gauss's th	neorem		(B)	Stoke's theo	rem				
	(C)	Gauss's di	ivergence th	eorem	(D)	Poynting th	eorem		•		
82.				ing a currer current loop		ibled, while t	he current	t is halved	. The		
	(A)	M	(B)	2M	(C)	M/2	(D)	4M			
83.	The	pointing th	eorem is a r	nathematica	l stateme	ent of the cor	servation	of			
	(A)	Electroma	ignetic ener	gy	(B)	Charge					
	(C)	Momentu	m		(D)	States					
84.		polarization $E_0 e^{j(wt+ ho z)} (\hat{a}$ Linear Left head	$(a_x + \hat{a}_y)$ is	ave with elec	(B) (D)	vector Elliptical Right head	circular				
85.	in a due (A)	magnetic fi to small ler Parallel to	eld B pointingth dl of the B		to the pl	n counter clos lane of condu Radially inv	ctor. The f vards				
	(C)	Tangentia	ıl at P		(D)	Radially out	twards				
86.				an ideal volt	_	ce is ———	Ω	and that	of an		
	(A)	zero, zero			(B)	zero, infinit	y				
	(C)	infinity, z	ero		(D)	infinity, inf	inity				
87.		ener diode : l for	is specially	designed to	operate i	in	bias	and is m	ainly		
	(A)	Forward,	amplification	on .	(B)	Forward, vo	ltage regu	ılation			
	(C)	Reverse, v	voltage regu	lation	(D)	Reverse, an	plification	1			

88. See the circuit.

The voltage drop across the diode D is ————— and in the power delivered to this diode is

(A) 0.7 V, 0.7 mW

(B) 0 V, 0 W

(C) 5 V, 5 mW

- (D) 5 V, 0 W
- - (A) 2.7
- (B) 240.4
- (C) 270
- (D) 370.4
- - (A) Forward, forward

(B) Forward, reverse

(C) Reverse, forward

- (D) Reverse, reverse
- 91. Lissajous figure obtained by combining $x = A \sin \omega t$ and $y = A \sin(\omega t + \pi/4)$ will be
 - (A) An ellipse

(B) A circle

(C) A straight line

- (D) A parabola
- 92. The magnetic lines of force inside a bar magnet
 - (A) do not exist
 - (B) depend upon area of cross section of magnet
 - (C) are from S to N pole of magnet
 - (D) are from N to S pole of magnet
- 93. Curie temperature is the temperature above which
 - (A) A paramagnetic material becomes diamagnetic
 - (B) A ferromagnetic material becomes diamagnetic
 - (C) A paramagnetic material becomes ferromagnetic
 - (D) A ferromagnetic material becomes paramagnetic

94.					_	ity that remains u		_
	(A)	Speed	(B)	Frequency	(C)	Intensity	(D)	Wavelength
95.	A m	agnetic needle is	kept	in a uniform ma	gneti	c field. It experien	ces	
	(A)	Neither a force	nor to	orque	(B)	A force but no to	rque	
	(C)	No torque			(D)	No force but a to	rque	
96.	Whi	ch one is not prod	luced	by sound waves	in ai	r?		
•	(A)	Polarization	(B)	Diffraction	(C)	Refraction	(D)	Reflection
97.	Whi	ch of the followin	g is a	n electromagnet	ic wa	ve?		
•	(A)	β -rays	(B)	Sound waves	(C)	γ -rays	(D)	α - rays
98.	reso	lution of human e	eye, d	ue to diffraction	effec	pupil diameter of	ximat	tely be equal t
	(A)	3 × 10 ⁻⁴ rad	(B)	15 × 10 ⁻⁴ rad	(C)	6 × 10⁴ rad	(D)	$3 \times 10^4 \text{ rad}$
99.		is possible to	mea	sure ———	· 	- coherence usi	ng t	he Michelso
	(A)	Spatial			(B)	Temporaļ		•
	(C)	Both (A) and (B)		(D)	None of the above	е	· . ·.
100.	who	se refractive inde	ex is 1) cm.	.58. Separation Because of mice	betwe	he slit is covered een two slit is 0.1 et, the central frin	em ai	nd the distanc
	(A)	$6.7 \times 10^{-4} \mathrm{cm}$			(B)	$1.6 \times 10^5 \text{ m}^{-1}$	-	•
	(C)	$1.6 \times 10^5 \mathrm{m}$	Þ		(D)	$6.7 \times 10^{-4} \ \mathrm{cm^{-1}}$		• .