COMMON P. G. ENTRANCE TEST - 2020

Test Booklet No.:

DEPT. OF HIGHER EDUCATION, GOVT. OF ODISHA

Subject Code 37	Subject Pl	HYSICS
Time Allowed : 90 Minutes	Full	Marks : 70

: INSTRUCTIONS TO CANDIDATES :

- IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
- 2. You have to enter your Hall Ticket No. on the Test Booklet in the Box provided alongside. DO NOT write anything else on the Test Booklet.
- 3. YOU ARE REQUIRED TO FILL UP & DARKEN HALL TICKET NO. & TEST BOOKLET NO. IN THE ANSWER SHEET AS WELL AS FILL UP TEST BOOKLET SERIAL NO. & ANSWER SHEET SERIAL NO. IN THE ATTENDANCE SHEET CAREFULLY. WRONGLY FILLED UP ANSWER SHEETS ARE LIABLE FOR REJECTION AT THE RISK OF THE CANDIDATE.
- 4. This Test Booklet contains 70 items (questions). Each item (question) comprises four responses (answers). You have to select the correct response (answer) which you want to mark (darken) on the Answer Sheet. In case, you feel that there is more than one correct response (answer), you should mark (darken) the response (answer) which you consider the best. In any case, choose ONLY ONE response (answer) for each item (question).
- You have to mark (darken) all your responses (answers) ONLY on the separate Answer Sheet provided by using BALL POINT PEN (BLUE OR BLACK). See instructions in the Answer Sheet.
- All items (questions) carry equal marks. All items (questions) are compulsory. Your total marks will depend only on the number of correct responses (answers) marked by you in the Answer Sheet. There is no negative marking.
- 7. After you have completed filling in all your responses (answers) on the Answer Sheet and after conclusion of the examination, you should hand over to the Invigilator the Answer Sheet issued to you. You are allowed to take with you the candidate's copy / second page of the Answer Sheet along with the Test Booklet, after completion of the examination, for your reference.
- Sheets for rough work are appended in the Test Booklet at the end.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

XL - 36/9

(Turn over)

XL-36/9 (Continued)

- 1. The directional derivative of the scalar function $\varphi = x^2yz + 4xz^2$ at the point (1, -2, -2)
 - 11) in the direction 2 i 11 j 11 2 k :
 - (A) $\frac{3}{27}$

(B) $\frac{27}{3}$

(C) 35

- (D) 20
- 2. The value of div $\left(\frac{\overrightarrow{r}}{r^3}\right)$:
 - (A) 0

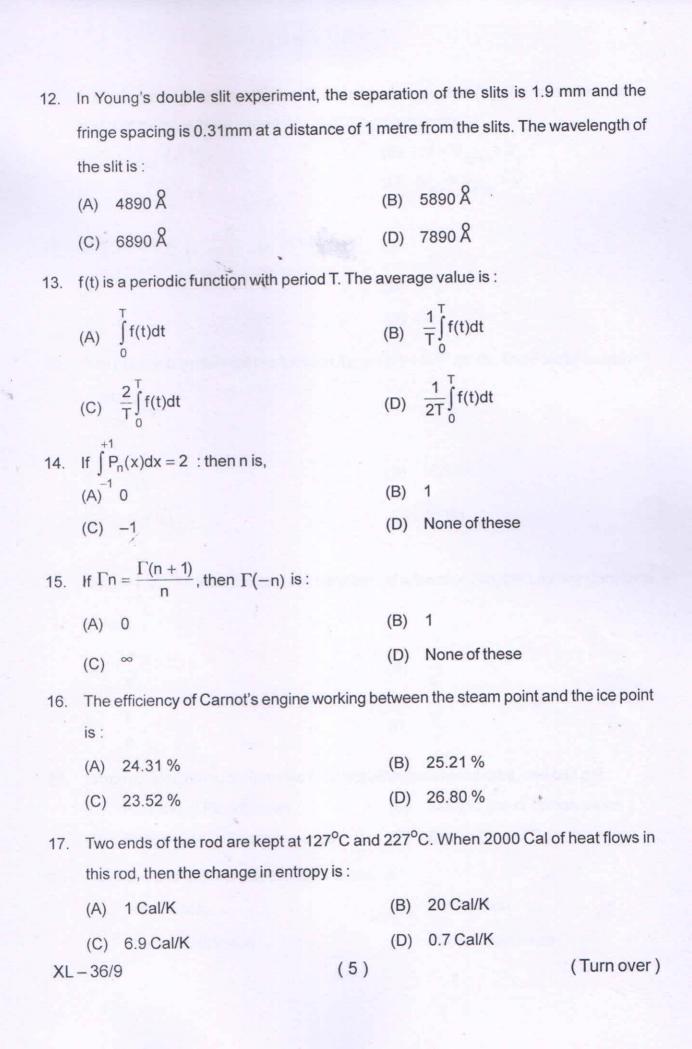
(B) 1

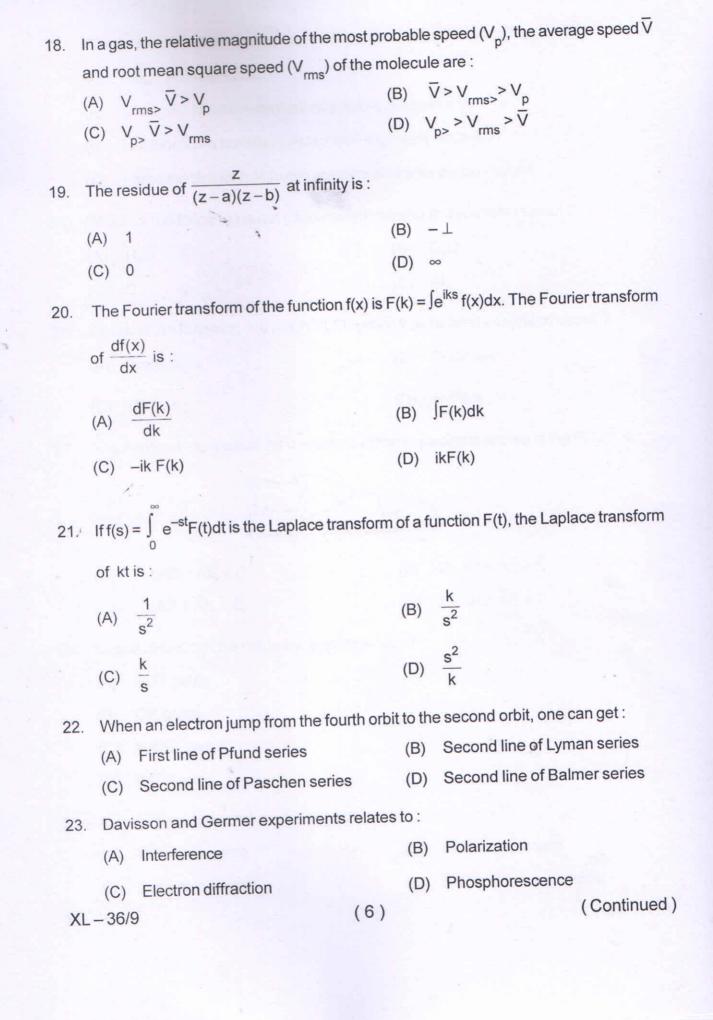
(C) 3

- (D) ∞
- 3. The value of $\int_{-\infty}^{+\infty} f(x)\delta(x-2)dx$ is:
 - (A) f(0)

(B) f(1)

(C) f(2)

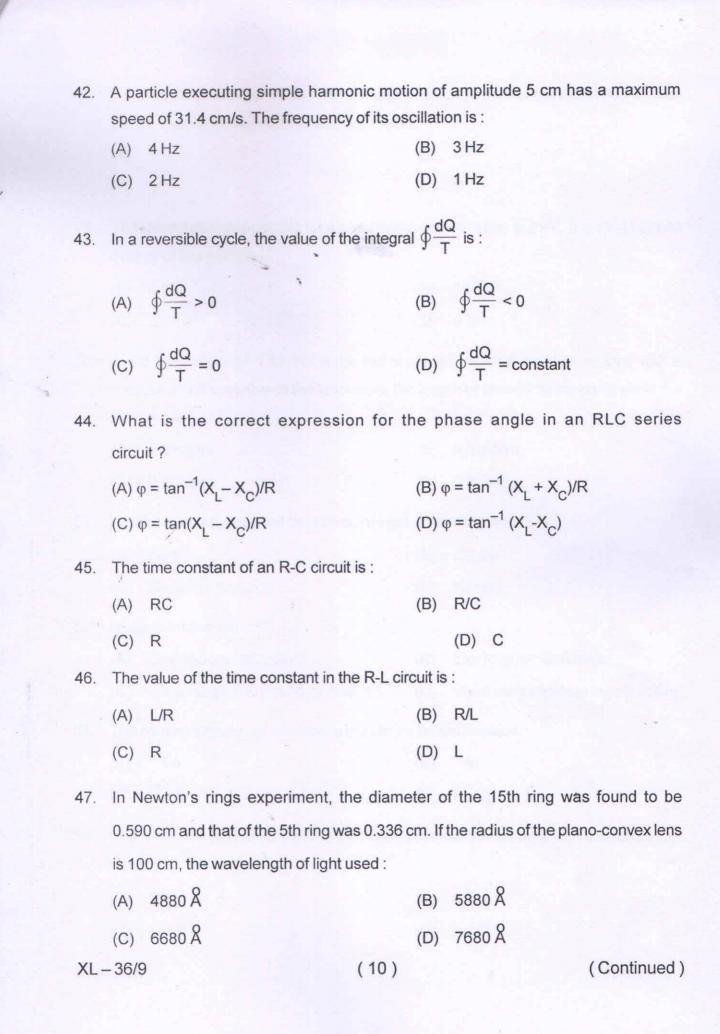

- (D) f(∞)
- 4. Moment of inertia of a sphere of mass M and radius R about one of its diameter is:
 - (A) $2/5 MR^2$
 - (B) $2/3 MR^2$
 - (C) $1/2 MR^2$
 - (D) MR²
- 5. Which of the following is true for the relation between modulus of rigidity (η), Young's modulus (Y) and Poisson's ratio (σ)?
 - (A) $\eta = \frac{Y}{2(1+\sigma)}$


(B) $\eta = \frac{Y}{3(1+\sigma)}$

(C) $\eta = \frac{Y}{2(1-\sigma)}$

(D) $\eta = \frac{Y}{3(1-\sigma)}$

6.	At what speed will the mass of a body be 1.25 times its rest mass?							
	(A)	0.1c	(B)	0.3c				
	(C)	0.4c	(D)	0.6c				
7.	The	electric filed intensity \overrightarrow{E} due to	an infinite u	niformly charged plane sheet at a				
	poin	t of distant r from the sheet is re	elated as:					
	(A)	Ē'αr ·	(B)	\overrightarrow{E} α r ⁻¹				
	(C)	\overrightarrow{E} α r^2	(D)	E is independent of r				
8.	The	magnetic field due to a long	straight curr	rent carrying conductor of radius				
	R, w	hen r > R (r is the distance betv	veen the poin	t and the axis of wire) proportional				
	to:							
	(A)	r	(B)	r ⁻¹				
	(C)	r ²	(D)	r ⁻²				
9.	The self-inductance of a coil with turns 50, flux 3 units and a current of 0.5A is :							
	(A)	75	(B)	150				
	(C)	300	(D)	450				
10.	0. The dielectric constant for a material with electric susceptibility of 5 is :							
	(A)	6	(B)	4				
	(C)	3	(D)	0				
11.	Two	thin convex lenses having focal	lengths 5cm	and 2 cm are coaxial and separated				
	by a	distance of 3 cm. The equivale	ent focal lengt	h is:				
	(A)	0.5 cm						
	(B)	2.5 cm						
	(C)	1.5 cm						
	(D)	3.5 cm						
XL-	- 36/9	9	(4)	(Continued)				



24.	Whic	ch is incorrect according to the	shell model of	f the nucleus?
	(A)	Magic number exist		
	(B)	Nucleons interact with their ne	earest neighbo	ours only
	(C)	Nucleons in a nucleus interact	t with a gener	al force field
	(D)	Large electronic quadruple m	oment exists	for certain nuclei
25.	Whic	ch of the following is not used a	s a moderato	or in a nuclear reactor ?
	(A)	H ₂ O	(B)	D ₂ O
	(C)	C	(D)	Al
26.	Whi	ch of the following is used in VL	SI technolog	y to form integrated circuit?
	(A)	Transistors	(B)	Switches
	(C)	Diodes	(D)	Buffers
27.	The	Boolean expression for the out	tput of the log	ic circuit shown in the Figure is:
		AO		
		Во		D-Y
		C		
		$Y = AB + A\overline{B} + C$	(B)	$Y = \overline{A}\overline{B} + A\overline{B} + \overline{C}$
	(C)	$Y = A\overline{B} + \overline{A}B + C$	(D)	$Y = AB + \overline{A}B + C$
28.	Digi	tal circuit can be made by repe	etitive use of :	
	(A)	NOT gates		
	(B)	OR gates		
	(C)	NAND gates		
	(D)	AND gates		
29.	Asy	nchronous counter are known a	as:	
	(A)	Ripple counters	(B)	Modulus counters
	(C)	Decade counters	(D)	Multiple check counters
XL	- 36/9	9	(7)	(Turn over

30.	Acco	ording to Schrödinger, a particle i	s equival	ent	to a:
	(A)	Single wave	(E	3)	Sound wave
	(C)	Light wave	([)	Wave packet
31.	Posi	tion and momentum operators s	atisfy [x,	^]=i	\hbar , the value of $[\hat{p}, [\hat{x}, \hat{p}]]$ is :
	(A) -	1	(E	3)	0
	(C)	ħ	1)	O)	i ħ
32.	The	normal Zeeman effect is:			
	(A)	Observed only in atoms with an	even nu	mbe	er of electrons
	(B)	Observed only in atoms with ar			
	(C)	Confirmation of space quantiza	ation		
	(D)	Not a confirmation of space qu	antization	1	
33.		Bragg's reflection by a crystal to ance d must be :	occur, th	e X-	-ray wavelength λ and interatomic
	(A)	λ > 2d	(B)	$\lambda = 2d$
	(C)	$\lambda \leq 2d$	(D)	λ < 2d
34.	Acc	ording to the band theory of solic	ds, the po	tent	tial energy of two types of standing
	wav	es inside the crystal differ by an	amount o	of:	
	(A)	Energy gap	((B)	6 eV
	(C)	2 eV		(D)	None of these
35.		e magnetic lines of force cannot enomenon is known as:	penetra	te th	ne body of a superconductor. This
	(A)	Isotopic effect		(B)	BCS theory
	(C)	Meissner effect		(D)	London theory *
36.	The	e Poynting vector S of an electro	magnetic	wa	ve is :
	(A)	$\overrightarrow{S} = \overrightarrow{E} \times \overrightarrow{H}$		(B)	$\overrightarrow{S} = \overrightarrow{E} \times \overrightarrow{B}$
		→			≓
	(C)	$\overrightarrow{S} = \overrightarrow{\frac{E}{B}}$		(D)	$\overrightarrow{S} = \frac{\overrightarrow{E}}{\overrightarrow{H}}$
XL	-36		(8)		(Continued)

		(C) ω			(D)	$\sqrt{\omega}$		
	38.	The thick	ness of half wav	e plate of quar	tz for a way	elength of	5000 Å (given re	fractive
		index μ _c	xtraordinary = 1.5	53 and refract	ive index μ	ordinary =1.	544) is :	
			78 x 10 ⁻³ cm		(B)	2.78 x 10	⁵ cm	
		(C) 2.7	78 x 10 ⁻⁷ cm		(D)	3.78 x 10	⁵ cm	
	39.	In a mic	ro-canonical ens	semble, a syst	em A of fixe	ed volume i	s in contact with	n a large
-			r B. Then:					
		(A) A	can exchange or	nly energy with	В			
		(B) A	can exchange o	nly particles w	th B			
		(C) A	can exchange n	either energy r	nor particle	s with B		
		(D) A	can exchange b	oth energy and	d particles	with B		
	40.	The Fe	rmi-Dirac distrib	ution function	is given as	s f _{F-D} (ε _F) =	$\frac{1}{\exp\left(\frac{\epsilon - \epsilon_F}{kT}\right) +}$	– where 1
		$\varepsilon_{\rm F}$ is the	e Fermi energy.	The value of f	$_{\text{-D}}(\epsilon_{\text{F}})$ at th	ne absolute	e zero temperat	ure is:
		(A) 0			(B)	1		
		(C) 1	2		(D)	infinity		
	41.		odies have their					
		in the r	atio of:					
		(A) 1	: 2		(B)	2:1		
		(C) 1	: √2		(D)	$\sqrt{2}:1$		
	XI	L-36/9			(9)		(Tu	urn over)

37. For good conductors, skin depth (δ)varies with frequency (ω) as :

48.	lfac	harged particle of mass m is a	ccelerated thre	ough a potential difference V volts,		
	the c					
	(A)	V	(B)			
	(C)	V^2	(D)	V ^{1/2}		
49.	The	lowest energy possible for a pa	article in a pot	ential box is 2 eV. The next highest		
	ener	rgy of the particle is:				
	(A)	4 eV	(B)	16 eV		
	(C)	32 eV	(D)	8 eV		
50.	A ro	d has length of 1 metre. If th	e rod is place	ed inside a satellite moving with a		
	velo	city of 0.8 c relative to the labo	ratory, the leng	gth of the rod by the observer in the		
	labo	ratory is:				
	(A)	0.5 metre	(B)	0.6 metre		
	(C)	0.7 metre	(D)	0.8 metre		
51.	As an object approaches the speed of light, it's mass becomes:					
	(A)	Zero	(B)	Double		
	(C)	Remains Same	(D)	Infinite		
52.	Nuc	lear forces are :				
	(A)	Gravitational attractive	(B)	Electrostatic repulsive		
	(C)	Long range and strong attract	etive (D)	Short range and strong attractive		
53.	The	binding energy per nucleon is	maximum for t	the nucleus :		
	(A)	⁵⁶ Fe	(B)	⁴ He		
	(C)	²⁰⁸ Pb	(D)	¹⁰¹ Mp		
54.	The	mean life time of one of the a	toms of a radi	oactive sample with disintegration		
	cons	stant λ is:				
	(A)	1/λ	(B)	In 2/λ		
	(C)	λ In 2	(D)	$\ln \lambda/2$		
XL	- 36/	9	(11)	(Turn over)		

	will h	nave the dimension of:			
	(A)	Velocity		(B)	Acceleration
	(C)	Force		(D)	Torque
56.	Han	nilton's canonical equations o	of motion a	are:	
	(A)	$\dot{q}_i = \frac{\partial H}{\partial p_i}$ and $\dot{p}_i = \frac{\partial H}{\partial q_i}$		(B)	$\dot{q}_i = \frac{\partial H}{\partial p_i}$ and $\dot{p}_i = -\frac{\partial H}{\partial q_i}$
	(C)	$\dot{q}_i = \frac{\partial H}{\partial \dot{p}_i}$ and $\dot{p}_i = \frac{\partial H}{\partial \dot{q}_i}$		(D)	$\dot{q}_i = \frac{\partial H}{\partial \dot{p}_i}$ and $\dot{p}_i = -\frac{\partial H}{\partial \dot{q}_i}$
57.	The	generalized velocity co-ordir	nate q _k of	a clas	ssical system with Lagrangian 'L' is
	said	to be cyclic if:			
	(A)	$\frac{\partial L}{\partial_{qk}} = \dot{q}_k$		(B)	$\frac{\partial L}{\partial_{qk}} = 0$
	(C)	$\frac{\partial L}{\partial q_k} = 0$		(D)	None of these
58.	A pa	article moves in a circular orl	oit about	the or	rigin under the action of a central
	force	$\overrightarrow{F} = -\frac{k \hat{r}}{r^3}$. If the potential	energy is	zero	at infinity, the total energy of the
	parti	cle is:			
	(A)	$-\frac{k}{r^2}$		(B)	$-\frac{k}{2r^2}$
	(C)	0		(D)	$\frac{k}{r^2}$
59.	The	law at given temperature, the	ratio of s	pectra	al emissive and absorptive powers
	of a l	body is called :			
	(A)	Wien's law		(B)	Kirchoff's law
	(C)	Stefan's law		(D)	Displacement law
XL-	- 36/9		(12)		(Continued)

55. If a generalized coordinate has the dimensions of momentum, the generalized velocity

60.	Aperm	nanent memory, which helps to start-up	o the	computer and does not erase data
	after p	ower off:		
	(A) N	Network interface card	(B)	CPU
	(C) F	RAM	(D)	ROM
61.	Which	of the following is non-volatile storage	e?	
	(A) E	Backup	(B)	Secondary
	(C) F	Primary	(D)	Cache
62.	A half	adder is a logic circuit with:		
	(A)	Two inputs and two outputs		
	(B)	Three inputs and one output		
	(C)	Three inputs and two outputs		
	(D)	Two inputs and one output		
63.	An osc	cillator differs from an amplifier becau	se:	
	(A) I	t has more gain		
	(B) I	t has less gain		
	(C) I	t requires no input signals		
	(D) I	t requires no dc supply		
64.	In a fe	erromagnetic material, as the applied	l filed	I is gradually reduced to zero, the
	polariz	zation still left is known as:		
	(A) (Coercive polarization	(B)	Spontaneous polarization
	(C) S	Space charge polarization	(D)	Remanent polarization
65.	The s	plitting of spectral line in the presence	of ar	n electric field is called as :
	(A)	Stark effect	(B)	Zeeman effect
	(C) I	Paschen-Back effect	(D)	Raman effect
XI.	- 36/9	(13)		(Turn over)

 (B) Hadrons only (C) All the charged particles (D) None of these 67. Which of the following elementary particle is a lepton: (A) Photon (B) μ-meson (C) Neutron (D) proton 	
 (D) None of these 67. Which of the following elementary particle is a lepton: (A) Photon (B) μ-meson 	
67. Which of the following elementary particle is a lepton : (A) Photon (B) μ-meson	
(A) Photon (B) μ-meson	
(C) Neutron (D) proton	
68. Biot-Savarts law in magnetic field is analogous to law in electric field :	
(A) Gauss law (B) Faraday law	
(C) Coulombs law (D) Ampere law	
69. The Ampere law is based on	
(A) Stoke's theorem	
(B) Green's theorem	
(C) Gauss divergence theorem	
(D) Maxwell theorem	
70. The magnetic flux density of a finite length conductor of radius 12 cm and	current 3 A
in air is :	
(A) 5×10^{-6} (B) 4×10^{-6}	
(C) 6×10^{-6} (D) 7×10^{-6}	

66. Weak nuclear forces act on:

SPACE FOR ROUGH WORK