CPET Physics Quiz-2

1. A cylindrical rod of length $L$ has a mass density distribution given by $\rho(x)=\rho_0(1+\frac{x}{L})$, where $x$ is measured from one end of the rod and $\rho_0$is a constant of appropriate dimensions. The center of mass of the rod is
2. The mass per unit length of a rod (length $2m$) varies as $\rho=3x kg/m$. The moment of inertia (in $kg m^2$) of the rod about a perpendicular axis passing through the tip of the rod (at $x=0$)
3. Consider an object moving with a velocity $\vec{v}$ in a frame which rotates with a constant angular velocity $\vec{\omega}$. The Coriolis force experienced by the object is
4. The velocity and acceleration of a particle moving in a two dimensional plane with unit vectors $\hat{r}$ and $\hat{\theta}$ in terms of the polar coordinates are
5. A particle of unit mass moves in a potential $V(x)=x^3-3x+2$. The angular frequency of small oscillation about the minimum of potential is
6. With what velocity an electron should move so that its kinetic energy equals its rest mass energy?
7. A uniform disk of mass $m$ and radius $R$ rolls, without slipping, down a fixed plane inclined at an angle $30$ degree to the horizontal. The linear acceleration of the disk is
8. Consider a classical particle subjected to an inverse square force field. The total energy of of the particle is $E$ and eccentricity is $\epsilon$. The particle will follow parabolic orbit if
9. An electron of rest mass $m_0$ gains energy so that its mass becomes $2m_0$. Its speed is
10. A satellite moves around a planet in a circular orbit at a distance $R$ from its center. The time period of revolution of the satellite is $T$. If the same satellite is taken to an orbit of radius $4R$ around the same planet, the time period would be
11. For a particle moving in a central potential, which one of the following statements are correct?
12. The length of a rod, of length 10m in a frame of reference which is moving with 0.6 c velocity in a direction making 30 degree angle with the rod is
13. Which of the following relations is correct for modulus of rigidity $\eta$ , bulk modulus $K$ and Poisson’s ratio $\sigma$ ?
14. A solid sphere, a hollow sphere and a disc, all having same mass and radius, are allowed to roll down a rough inclined plane from same height. Which will reach the bottom first ?
15. A particle moving with relativistic speed $\vec{v}$ has an acceleration $\vec{a}$ due to net force $\vec{F}$. If $m_0$ is the rest mass and $\gamma=\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}$, then net force $\vec{F}$ is
16. A particle is kept at rest at a distance R (eart's radius) above the earth's surface. The minimum speed at which it should be projected so that it does not return is
17. A spaceship moving away from the earth with velocity $0.5 c$ fires a rocket whose velocity relative to the space is $0.5 c$ away from earth. The velocity of the rocket as observed from the earth is
18. Air is pushed into a soap bubble of radius $r$ to double its radius. If the surface tension of the soap solution is $S$, the work done in the process is
19. The moment of inertia I of a thin rod of length L and mass M, about an axis perpendicular to the rod at one end, is given by
20. A mass m connected to a spring of force constant k is stretched by a length A and then released from rest so that it executes simple harmonic motion. The average kinetic energy, averaged over one time period, is
21. A fluid of coefficient of viscocity $\eta$ is flowing horizontally through a pipe of length $l$ and radius $a$ under a constant pressure difference $p$ over the length of the pipe. The viscous resistance of the fluid is
22. Which of the following defines a conservative force $\vec{F}$ ?
23. A body of mass $M$ rotating in a circular orbit of radius $R$ due to an attractive central force given by $F(r)=-\frac{k}{r}$. Its orbital period would be proportional to
24. The interatomic potential of a diatomic molecule is given by $V(r)=\frac{A}{r^2}-\frac{B}{r}$. The equilibrium separation between the two atoms in the molecule is
25. A particle is moving in a plane with constant radial velocity of $12 m/s$ and constant angular velocity of $2 rad/s$. When the particle is at a distance $r=8 m$ from the origin, the magnitude of instantaneous velocity of the particle is

 

Scroll to Top