CPET Physics Quiz-1

1. If $\vec{r}$ is a position vector, $r^n\vec{r}$ is solenoidal for
2. If S is is a closed surface enclosing a volume V, the value of the integral $\oint_S d\vec{s}$ must be
3. The residue of the complex function  $f(z)=e^{1/z}$  at $z=0$ is
4. The Fourier coefficients of the function $f(x)=\left\{\begin{matrix} 0, -\pi<x<0,
\\1, 0<x<\pi

\end{matrix}\right.$ expanded in Fourier series are
5. Let $\vec{r}$ be the position vector of a point on a closed contour C. What is the value of the line integral $\oint\vec{r} \cdot d\vec{r}$ ?
6. The unit vector perpendicular to the surface $ x^2 + y^2 +z^2=3$ at the point $(1,1,1)$ is
7. The trace of a $2\times 2$ matrix is $4$ and its determinant is $8$ . If one of the eigenvalues is $2(1+i)$ , the other eigenvalue is
8. If C is a closed contour of unit circle centered at origin, the value of the complex integral $\oint_C \frac{z}{z^2+2z+2}dz$ is
9. For the function $f(z)=\frac{z \sin z}{(z-\pi)^3}$, the residue at the pole $z=\pi$ is
10. A vector perpendicular to both $\vec{A}=2\hat{i}+\hat{j}-\hat{k}$ and $\vec{B}=\hat{i}+3\hat{j}-2\hat{k}$ is
11. The value of $m$ so that the vectors $\vec{a}=2\hat{i}-4\hat{j}+5\hat{k}$, $\vec{b}=\hat{i}-m\hat{j}+\hat{k}$ and $\vec{c}=3\hat{i}+2\hat{j}-5\hat{k}$ are coplanner is
12. The general solution of the ordinary differential equation $\frac{d^2y}{dx^2}-2\frac{dy}{dx}+y=0$ is
13. The Laplace transform of $3t^2+2e^{5t}$ is
14. If $\delta(x)$ is Delta function then
15. One of the solutions of the equation $(1-x^2)\frac{d^2y}{dx^2}-2x\frac{dy}{dx}+12y=0$ is
16. The directional derivative of $\phi=x^2y+xz$ at (1,2,-1) in the direction $\vec{A}=2\hat{i}-2\hat{j}+\hat{k}$ is
17. The volume integral $\int_\nu (r^2+2) \vec{\nabla} \cdot (\frac{\hat{r}}{r^2}) d\tau$ ,where $V$ is the volume of a sphere of radius $R$ centered at the origin, is equal to
18. The value of the integral $\int_{-\infty}^{\infty} x^2 e^{-ax^2} dx$, where $a>0$ is
19. The value of $\Gamma(-3/2)$ is
20. Consider the transformation to a new set of coordinates $(p,q)$ from rectangular Cartesian coordinates $(x,y)$ , where $p=x+y$ and $q=x-y$. In the $(p,q)$ coordinate system, the area element $dxdy$ is
21. The Fourier transform of $e^{-|x|}$ is
22. The Bessel function $J_{1/2}(x)$ is
23. The modulus and phase of the complex number $(1+i)i$ in polar representation are
24. The value of the integral $\oint_C \frac{\sin z\,dz}{2z-\pi}$ , with $C$ a circle $|z|=2$ is
25. The value of $\frac{2}{5}P_3(x)+\frac{3}{5}P_1(x)$  , where $P_l(x)$ and $P_3(x)$ are Legendre polynomials, is

 

Scroll to Top