Quantum Mechanics Quiz for JAM, JEST, CUET PG, CPET & other MSc Physics Entrance Exams. Please wait... 1. Which of the following wave functions can be solutions of Schrodinger's equation for all values of x?$\psi=A \sec x$$\psi=A \tan x$$\psi=A e^{x^2}$$\psi=Ae^{-x^2}$ 2. Consider the wave function $\psi(x,t)=A e^{-\lambda x^2-i\omega t}$, where A, $\lambda$ and $\omega$ are positive real constants. The value of A for which the wave function is normalized$(\frac{\lambda}{\pi})^{1/4}$$(\frac{2\lambda}{\pi})^{1/4}$$(\frac{\lambda}{\pi})^{1/2}$$(\frac{2\lambda}{\pi})^{1/4}$ 3. Consider the wave function $\psi(x,t)=Ae^{-\lambda |x|} e^{-i\omega t}$, where A, $\lambda$ and $\omega$ are positive real constants. The value of A for which the wave function is normalized$\sqrt{\lambda}$$\frac{1}{\sqrt{\lambda}}$$\sqrt{2\lambda}$$\frac{2}{\sqrt{\lambda}}$ 4. A particle of mass m is in the state $\psi(x,t)=A e^{-a(mx^2/\hbar)} e^{-iat}$, where A and a are positive real constants. For what potential energy function $V(x)$ does $\psi(x,t)$ satisfy Schrodinger equation?$ma^2x^2$$2ma^2x^2$$3ma^2x^2$$4ma^2x^2$ 5. A particle of mass m is in the state $\psi(x,t)=(\frac{2am}{\pi\hbar})^{1/4} e^{-a(mx^2/\hbar)} e^{-iat}$. What are the values of standard deviation in $x$ ($\sigma_x$) and standard deviation in $p$ ($\sigma_p$)?$\sigma_x=\sqrt{\frac{\hbar}{4am}}$ and $\sigma_p=\sqrt{am\hbar}$$\sigma_x=\sqrt{\frac{\hbar}{am}}$ and $\sigma_p=\sqrt{am\hbar}$$\sigma_x=\sqrt{\frac{\hbar}{4am}}$ and $\sigma_p=\sqrt{4am\hbar}$$\sigma_x=\sqrt{\frac{\hbar}{2am}}$ and $\sigma_p=\sqrt{2am\hbar}$ 6. The expectation values of position and momentum are$\frac{d}{dt}\langle x \rangle =-\frac{\langle p \rangle}{m}$ and $\frac{d}{dt}\langle p \rangle =\langle \frac{\partial V}{\partial x}\rangle$$\frac{d}{dt}\langle x \rangle =\frac{\langle p \rangle}{m}$ and $\frac{d}{dt}\langle p \rangle =\langle \frac{\partial V}{\partial x}\rangle$$\frac{d}{dt}\langle x \rangle =\frac{\langle p \rangle}{m}$ and $\frac{d}{dt}\langle p \rangle =\langle -\frac{\partial V}{\partial x}\rangle$$\frac{d}{dt}\langle x \rangle =-\frac{\langle p \rangle}{m}$ and $\frac{d}{dt}\langle p \rangle =\langle -\frac{\partial V}{\partial x}\rangle$ 7. The dimension of wave function for one dimensional system is $L^{-1/2}$$L^{-3/2}$$L^{-1}$$L$ 8. The SI unit of wave function for a three dimensional system is$m^{-1/2} s^{-2}$$m^{-3/2} s{^-1}$ $m^{-3/2}$$m^{-1/2}$ 9. Consider a one-dimensional particle which is confined within the region $0\leq x \leq a$ and whose wave function is $\psi(x,t)=\sin(\pi x/a)e^{-i\omega t}$. The probability of finding the particle in the interval $ a/4 \leq x \leq 3a/4 $ is$\frac{1+\pi}{\pi}$$\frac{2+\pi}{\pi}$$\frac{2+\pi}{2\pi}$$\frac{\pi}{2}$ 10. The probability current density for a particle of mass m with wave function, $\psi(x)=A e ^{ikx} + B e^{-ikx}$ is$\frac{\hbar k}{m}(|A|^2+|B|^2)$$\frac{\hbar}{m}(|A|^2+|B|^2)$$\frac{\hbar k}{m}(|A|^2-|B|^2)$$\frac{\hbar}{m}(|A|^2-|B|^2)$ 11. The operator $(\frac{d}{dx}+x)(\frac{d}{dx}-x)$ is equivalent to$\frac{d^2}{dx^2}-x^2-1$$\frac{d^2}{dx^2}-x^2+1$$\frac{d^2}{dx^2}-x^2$$\frac{d^2}{dx^2}-x-1$ 12. The eigenfunction of the momentum operator $\hat{p}$ with eigenvalue $p_0$ is$\frac{1}{\sqrt{2\pi\hbar}}e^{-ip_0x/\hbar}$$\frac{1}{\sqrt{2\pi\hbar}}e^{ip_0x/\hbar}$$\frac{1}{\sqrt{2\pi\hbar}}e^{ip_0/\hbar}$$\frac{1}{\sqrt{2\pi\hbar}}e^{-p_0x/\hbar}$ 13. The eigenfunction of the position operator $\hat{x}$ with eigenvalue $x_0$ is$\delta(x-x_0)$$\delta(x)$$e^{-ix x_0/\hbar}$$e^{ix x_0/\hbar}$ 14. Which of the following operators are Hermitian?PositionMomentumTotal energyAll of these 15. The eigenvalues of a Hermitian operator arerealpurely imaginaryzerocomplex numbers 16. The wave function of a particle is given by $\psi(x)=\frac{3}{5}\phi_1(x) + \frac{4}{5}\phi_2(x)$, where $\phi_1(x)$ and $\phi_2(x)$ are eigenfunctions with corresponding energy eigen values $-1eV$ and $-2eV$ respectively. The energy of the particle in the state $\psi$ is$-\frac{41}{25}eV$$-\frac{11}{5}eV$$-\frac{36}{25}eV$$-\frac{7}{5}eV$ 17. The commutator of position operator $\hat{x}$ and momentum operator $\hat{p}$ is$[\hat{x},\hat{p}]=i\hbar$$[\hat{x},\hat{p}]=-i\hbar$$[\hat{x},\hat{p}]=\hbar$$[\hat{x},\hat{p}]=-\hbar$ 18. The commutator $[\hat{x}^n,\hat{p}]$ is$i\hbar nx^{n+1}$$-i\hbar nx^{n+1}$$-i\hbar nx^{n-1}$$i\hbar nx^{n-1}$ 19. The Hermitian conjugate of the operator $\frac{d}{dx}$ is$-\frac{d}{dx}$$\frac{d}{dx}$$-i\frac{d}{dx}$$i\frac{d}{dx}$ 20. If A linear operator $\hat{O}$ acts on two orthonormal states of a system $\psi_1$ and $\psi_2$ as per following: $\hat{O}\psi_1=\psi_2$ and $\hat{O}\psi_2=\frac{1}{\sqrt{2}}(\psi_1+\psi_2)$. The system is in a mixture of two states defined by $\psi=\frac{1}{\sqrt{2}}\psi_1+ \frac{i}{\sqrt{2}}\psi_2$. The expectation values of $\hat{O}$ in the state $\psi$ is$\frac{1}{2\sqrt{2}}(1+i(\sqrt{2}+1))$$\frac{1}{2\sqrt{2}}(1-i(\sqrt{2}+1))$$\frac{1}{2\sqrt{2}}(1+i(\sqrt{2}-1))$$\frac{1}{2\sqrt{2}}(1-i(\sqrt{2}-1))$ 21. Given two Hermitian operators $\hat{x}$ and $\hat{p}$, which of the following combination would be Hermitian?$\hat{x}\hat{p}$$\hat{x}+i\hat{p}$$\hat{x}\hat{p}+\hat{p}\hat{x}$$\hat{x}\hat{p}-\hat{p}\hat{x}$ 22. The uncertainty relation between two operators $\hat{A}$ and $\hat{B}$ is$\Delta A\Delta B \leq \frac{1}{2}|\langle [\hat{A},\hat{B}]\rangle|$$\Delta A\Delta B \geq |\langle [\hat{A},\hat{B}]\rangle|$$\Delta A\Delta B \leq |\langle [\hat{A},\hat{B}]\rangle|$$\Delta A\Delta B \geq \frac{1}{2}|\langle [\hat{A},\hat{B}]\rangle|$ 23. The uncertainty relation between position and momentum operator is$\Delta x\,\Delta p \leq \frac{\hbar}{2}$$\Delta x\,\Delta p \geq \frac{\hbar}{2}$$\Delta x\,\Delta p \geq \frac{1}{2}$$\Delta x\,\Delta \leq \frac{1}{2}$ 24. The position-momentum uncertainty for a Gaussian wave packet is$\Delta x\,\Delta p = 0$$\Delta x\,\Delta p = \hbar$$\Delta x\,\Delta p = \frac{\hbar}{2}$$\Delta x\,\Delta p \geq \frac{\hbar}{2}$ 25. A particle of mass $m$ is in a one dimensional potential, $V(x)=\begin{cases}0, & 0\leq x \leq L\\\infty, & \text{otherwise}\end{cases}$. The normalized energy eigen functions and energy eigen values are respectively$\psi_n(x)=\sqrt{\frac{1}{L}}\sin(\frac{n\pi}{L}x)$ and $E_n=\frac{n^2\pi^2\hbar^2}{mL^2}$$\psi_n(x)=\sqrt{\frac{2}{L}}\sin(\frac{n\pi}{L}x)$ and $E_n=\frac{n^2\pi^2\hbar^2}{2mL^2}$$\psi_n(x)=\sqrt{\frac{1}{L}}\sin(\frac{n\pi}{L}x)$ and $E_n=\frac{n^2\pi^2\hbar^2}{8mL^2}$$\psi_n(x)=\sqrt{\frac{4}{L}}\sin(\frac{n\pi}{L}x)$ and $E_n=\frac{n^2\pi^2\hbar^2}{mL^2}$ 26. A particle of mass $m$ is in a one dimensional infinite square well of width $L$. The expectation values $\langle x \rangle$ and $\langle p \rangle$ for the ground state is$\frac{L}{4}$ and $0$$\frac{L}{3}$ and $1$$\frac{L}{2}$ and $0$$L$ and $1$ 27. Consider a particle moving freely between $x=0$ to $x=a$ inside an infinite square well potential. The uncertainties product $\Delta x \Delta p$ in the ground state is$\frac{\hbar}{2}\sqrt{\frac{\pi^2}{3}-2}$$\frac{\hbar}{2}\sqrt{\frac{\pi^2}{3}+2}$$\frac{\hbar}{2}\sqrt{\frac{\pi^2}{3}-1}$$\frac{\hbar}{2}\sqrt{\frac{\pi^2}{3}+1}$ 28. A particle in the infinite square well of width a has its initial wave function an even mixture of first two stationary states, $\psi(x,0)=A[\psi_1(x)+\psi_2(x)]$. The normalized wave function $\psi(x,t)$ is$\frac{1}{\sqrt{a}}[\sin(\frac{\pi x}{a}) e^{-\pi^2\hbar^2/2ma^2} + \sin(\frac{2\pi x}{a}) e^{-4\pi^2\hbar^2/2ma^2}]$$\frac{2}{\sqrt{a}}[\sin(\frac{\pi x}{a}) e^{-\pi^2\hbar^2/2ma^2} + \sin(\frac{2\pi x}{a}) e^{-4\pi^2\hbar^2/2ma^2}]$$\frac{1}{\sqrt{a}}[\sin(\frac{\pi x}{a}) e^{-\pi^2\hbar^2/2ma^2} + \sin(\frac{2\pi x}{a}) e^{-2\pi^2\hbar^2/2ma^2}]$$\frac{2}{\sqrt{a}}[\sin(\frac{\pi x}{a}) e^{-\pi^2\hbar^2/2ma^2} + \sin(\frac{2\pi x}{a}) e^{-2\pi^2\hbar^2/2ma^2}]$ 29. A particle in the infinite square well has its wave function an even mixture of first two stationary states, $\psi(x)=\sqrt{\frac{1}{3}}\psi_1(x)+\sqrt{\frac{2}{3}}\psi_2(x)$. Identify the correct statement.$\langle x \rangle =\frac{L}{2}$ and $\langle E \rangle=\frac{3 \pi^2 \hbar^2}{2mL^2}$$\langle x \rangle =\frac{2L}{3}$ and $\langle E \rangle=\frac{ \pi^2 \hbar^2}{2mL^2}$$\langle x \rangle =\frac{L}{4}$ and $\langle E \rangle=\frac{3 \pi^2 \hbar^2}{8mL^2}$$\langle x \rangle =\frac{L}{3}$ and $\langle E \rangle=\frac{8 \pi^2 \hbar^2}{2mL^2}$ 30. The normalized ground state wave function of a one dimensional harmonic oscillator is$(\frac{m\omega}{\pi\hbar})^{1/2} e^{-\frac{m\omega}{2\hbar}x^2}$$(\frac{m\omega}{\pi\hbar})^{1/4} e^{-\frac{m\omega}{2\hbar}x^2}$$(\frac{m\omega}{\pi\hbar})^{1/2} e^{-\frac{m\omega}{\hbar}x^2}$$(\frac{m\omega}{\pi\hbar})^{1/4} e^{-\frac{m\omega}{\hbar}x^2}$ 31. The expectation values $\langle x \rangle$ and $\langle p \rangle$ for the ground state of the harmonic oscillator are respectively 0 and 11 and 01 and 10 and 0 32. The uncertainties product $\Delta x \Delta p$ for the ground state of harmonic oscillator is$\Delta x \Delta p=\hbar$$\Delta x \Delta p=\frac{\hbar}{2}$$\Delta x \Delta p=\frac{\hbar}{4}$$\Delta x \Delta p=\frac{3\hbar}{2}$ 33. The expectation values of kinetic energy and potential energy for ground state of the harmonic oscillator are respectively$\langle T \rangle=\frac{\hbar}{4}$ and $\langle V \rangle=\frac{\hbar}{4}$$\langle T \rangle=\frac{\hbar}{2}$ and $\langle V \rangle=\frac{\hbar}{4}$$\langle T \rangle=\frac{\hbar}{4}$ and $\langle V \rangle=\frac{\hbar}{2}$$\langle T \rangle=\frac{\hbar}{2}$ and $\langle V \rangle=\frac{\hbar}{2}$ 34. The zero point energy of the harmonic oscillator is$0$$\hbar$$\frac{\hbar}{2}$$\frac{\hbar}{4}$ 35. A particle is in a state which is a superposition of the ground state $\phi_0$ and the first excited state $\phi_1$ of a one dimensional harmonic oscillator. The state is given by $\phi=\frac{1}{\sqrt{5}}\phi_0 +\frac{2}{\sqrt{5}}\phi_1$. The expectation value of energy of the particle is$\frac{11}{10}\hbar\omega$$\frac{13}{10}\hbar\omega$$\frac{13}{5}\hbar\omega$$\frac{11}{5}\hbar\omega$ 36. A particle with energy $E$ is incident on a potential given by $V(x)=\begin{cases}0, & x< 0\\V_0, & x \geq 0\end{cases}$. The wave function of the particle for $V<E_0$ in the region $x>0$ (in terms of positive constants A,B and k) is$Ae^{kx}+Be^{-kx}$$Ae^{-kx}$$Ae^{ikx}+Be^{-ikx}$zero 37. A particle is moving inside a infinite cubical well $V(x)=\begin{cases}0, & \text{if}\,\, 0\leq x\leq a, 0\leq y\leq a, 0\leq z\leq a\\\infty, & \text{otherwise}\end{cases}$. The ground state wave function and ground state energy are$\psi_1=(\frac{2}{a})^{3/2} \sin\frac{\pi x}{a} \sin\frac{\pi y}{a} \sin\frac{\pi z}{a}$, $E_1=\frac{3\pi^2\hbar^2}{2m a^2}$$\psi_1=(\frac{2}{a})^{1/2} \sin\frac{\pi x}{a} \sin\frac{\pi y}{a} \sin\frac{\pi z}{a}$, $E_1=\frac{\pi^2\hbar^2}{2m a^2}$$\psi_1=(\frac{3}{a})^{3/2} \sin\frac{\pi x}{a} \sin\frac{\pi y}{a} \sin\frac{\pi z}{a}$, $E_1=\frac{2\pi^2\hbar^2}{2m a^2}$$\psi_1=(\frac{2}{a})^{1/2} \sin\frac{\pi x}{a} \sin\frac{\pi y}{a} \sin\frac{\pi z}{a}$, $E_1=\frac{\pi^2\hbar^2}{m a^2}$ 38. For a quantum particle confined in a cubic box of side $L$, the ground state energy is given by $E_1$. The energy of the first excited state is$E_1$$2E_1$$4E_1$$6E_1$ 39. Three identical non-interacting particles, each of spin $\frac{1}{2}$ and mass $m$, are moving in a one dimensional infinite potential well of width $a$. The energy of the lowest energy state of the system is$\frac{\pi^2\hbar^2}{ma^2}$$\frac{2\pi^2\hbar^2}{ma^2}$$\frac{3\pi^2\hbar^2}{ma^2}$$\frac{4\pi^2\hbar^2}{ma^2}$ 40. A system of 8 non-interacting electrons is confined by a three dimensional potential $V(r)=\frac{1}{2}m\omega^2r^2$. The ground state energy of the system is$6\hbar\omega$$12\hbar\omega$$18\hbar\omega$$24\hbar\omega$ Loading...